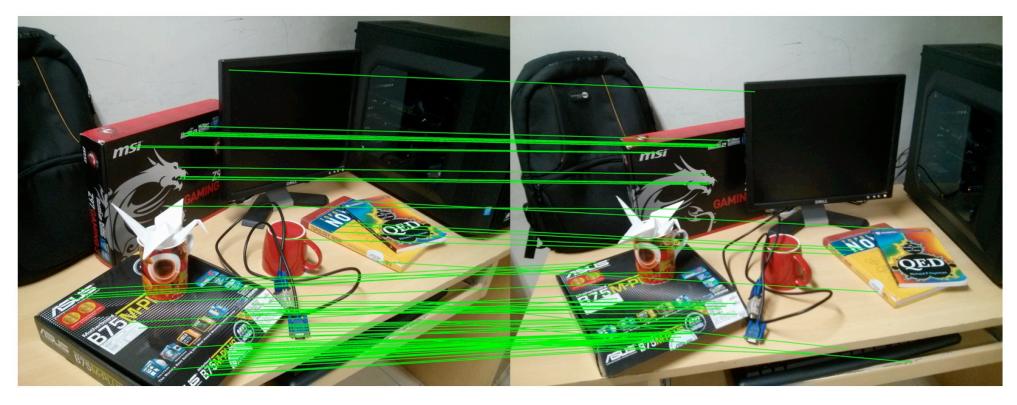


Feature Detection and Matching: Detectors and Descriptors I

CS 6384 Computer Vision
Professor Yapeng Tian
Department of Computer Science

Feature Detection and Matching



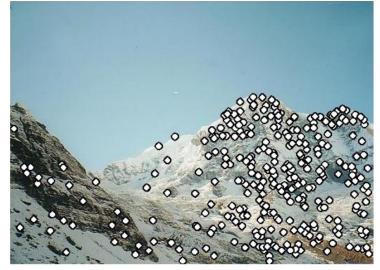
Geometry-aware Feature Matching for Structure from Motion Applications. Shah et al, WACV'15

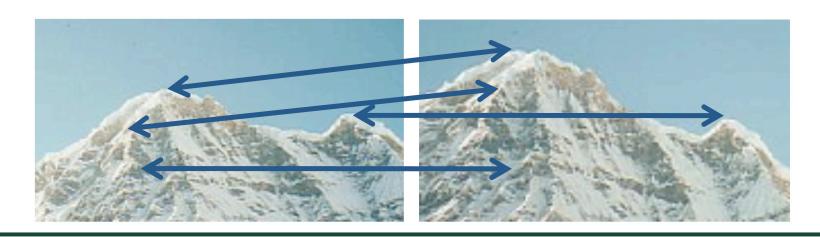
Applications: stereo matching, image stitching, 3D reconstruction, camera pose estimation, object recognition

Matching with Features

Detecting features

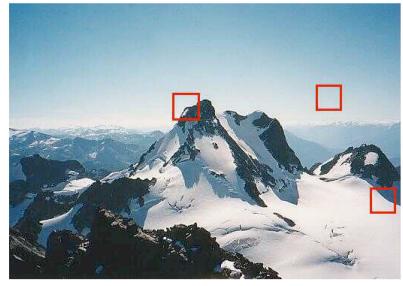
Matching Features

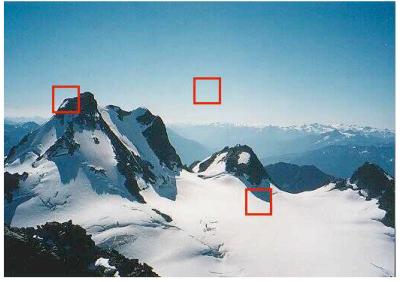




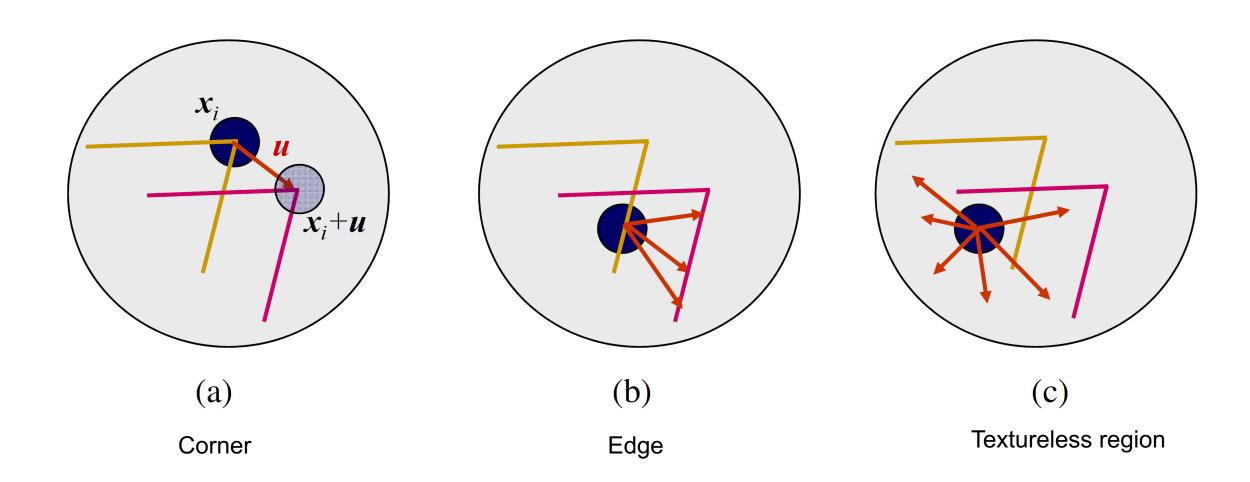
Feature Detectors

How to find image locations that can be reliably matched with images?



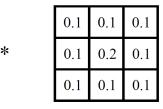


Feature Detectors



Preliminary: Linear Filtering

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120



69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

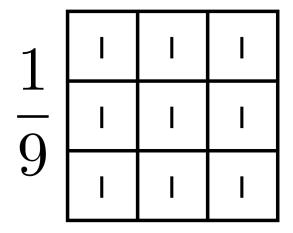
Cross-Correlation
$$g(i,j) = \sum_{k,l} f(i+k,j+l)h(k,l)$$

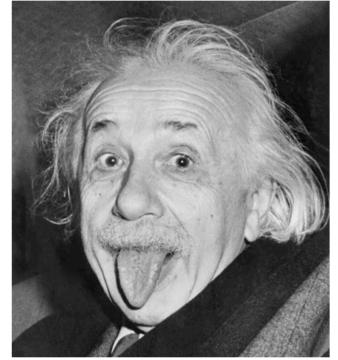
$$g = f \otimes h$$

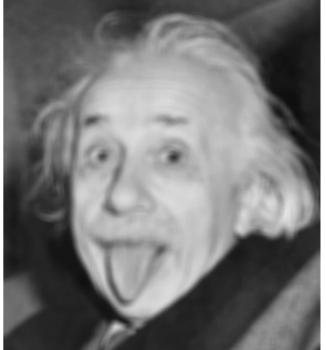
Kernel

Preliminary: Box Filter

Replace a pixel with a local average (smoothing)

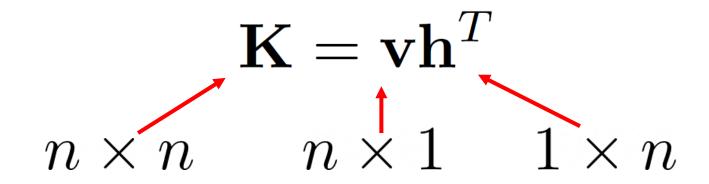






Preliminary: Separable Filtering

A 2D convolution can be performed by a 1D horizontal convolution followed a 1D vertical convolution



Outer product

Preliminary: Separable Filtering

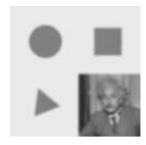
$\frac{1}{K^2}$	1	1		1
	1	1	• • •	1
	•	•••	1	•
	1	1	• • •	1

$rac{1}{256}$	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$$\frac{1}{K} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$\frac{1}{4} \ | \ 1 \ | \ 2 \ | \ 1$$

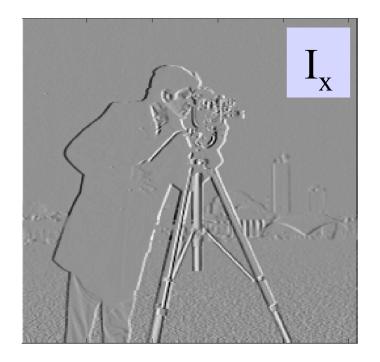
$$\frac{1}{16}$$
 1 4 6 4 1

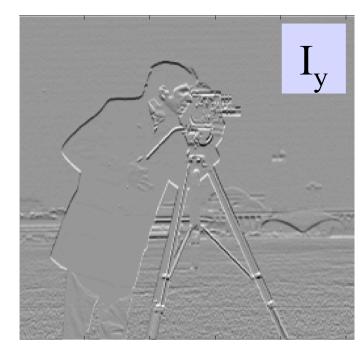


- (a) box, K = 5
- (b) bilinear

(c) "Gaussian"

Preliminary: Image Gradient





Preliminary: Image Gradient

Derivative of a function

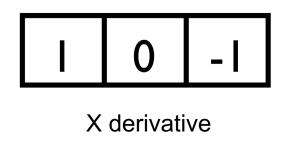
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

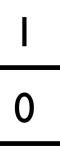
Central difference is more accurate

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

Image gradient with central difference

Applying a filter

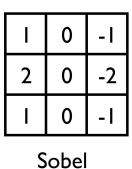




Y derivative

Preliminary: Image Gradient

Sobel Filter



=

2

I 0 -I

x-derivative

weighted average and scaling

$$oldsymbol{S}_x=egin{array}{c|cccc} & oldsymbol{\mathsf{I}} & oldsymbol{\mathsf{0}} & oldsymbol{\mathsf{-I}} \ & oldsymbol{\mathsf{2}} & oldsymbol{\mathsf{0}} & oldsymbol{\mathsf{-I}} \ & oldsymbol{\mathsf{I}} & oldsymbol{\mathsf{0}} & oldsymbol{\mathsf{-I}} \ & oldsymbol{\mathsf{0}} \ & oldsymbol{\mathsf{0}} & oldsymbol{\mathsf{-I}} \ & oldsymbol{\mathsf{0}} & oldsymbol{\mathsf{-I}} \ & oldsymbol{\mathsf{0}} \ &$$

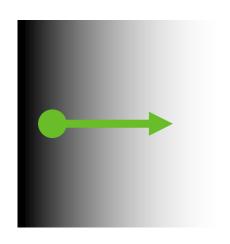
$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f}$$

$$rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

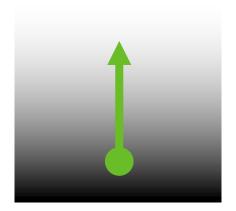
$$abla oldsymbol{f} = \left[rac{\partial oldsymbol{f}}{\partial x}, rac{\partial oldsymbol{f}}{\partial y}
ight]$$

Image Gradient Direction

Some gradients



$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right] \qquad \nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$



$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

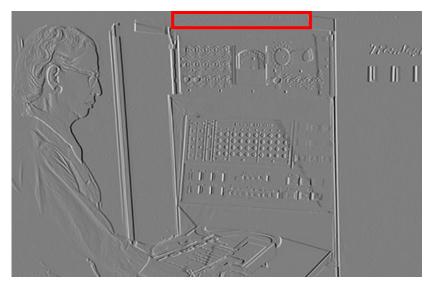
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

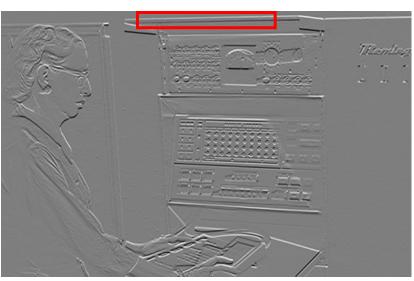
Figure Credit: S. Seitz

Image Gradient

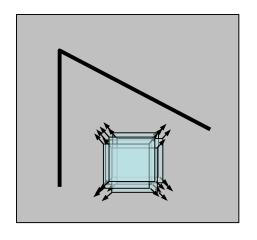
Gradient: direction of maximum change. What's the relationship to edge direction?

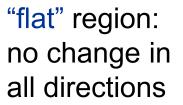
lx ly

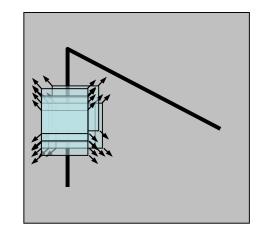




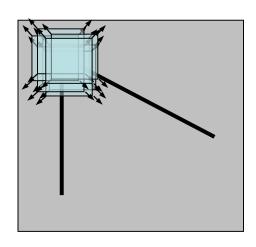
Corners are regions with large variation in intensity in all directions







"edge":
no change
along the edge
direction

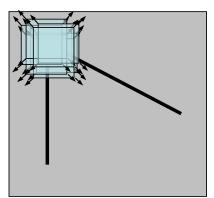


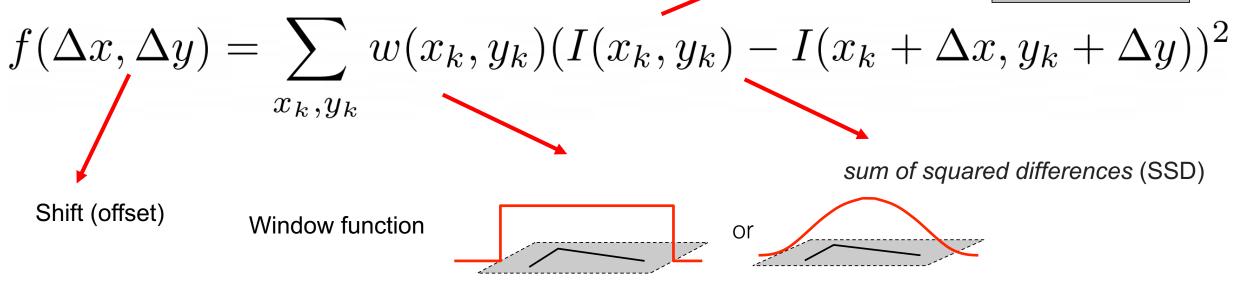
"corner":
significant
change in all
directions

Grayscale image I(x,y)

Image patch inside the window

Gaussian





1 in window, 0 outside

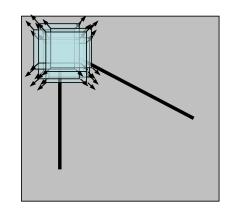
Idea: if $f(\Delta x, \Delta y)$ is large for all $(\Delta x, \Delta y)$, the patch has a corner

Taylor series

One dimension $f(x_0 + \Delta x) = f(x_0) + \Delta x f'(x_0) + \frac{1}{2!} (\Delta x)^2 f''(x_0) + \dots$ about x_0

Two dimension about (x, y)

$$f(x + \Delta x, y + \Delta y) = f(x, y) + [f_x(x, y) \Delta x + f_y(x, y) \Delta y] + \frac{1}{2!} [(\Delta x)^2 f_{xx}(x, y) + 2 \Delta x \Delta y f_{xy}(x, y) + (\Delta y)^2 f_{yy}(x, y)] + \frac{1}{3!} [(\Delta x)^3 f_{xxx}(x, y) + 3 (\Delta x)^2 \Delta y f_{xxy}(x, y) + 3 \Delta x (\Delta y)^2 f_{xyy}(x, y) + (\Delta y)^3 f_{yyy}(x, y)] + \dots$$



Sum of squared
$$f(\Delta x, \Delta y) = \sum_{x_k, y_k} w(x_k, y_k) (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$
 differences

First order approximation

$$I(x+\Delta x,y+\Delta y)pprox I(x,y)+I_x(x,y)\Delta x+I_y(x,y)\Delta y$$

X derivative

Y derivative

$$f(\Delta x, \Delta y) \approx \sum_{x,y} w(x,y) (I_x(x,y)\Delta x + I_y(x,y)\Delta y)^2$$

$$f(\Delta x, \Delta y) \approx (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \qquad M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

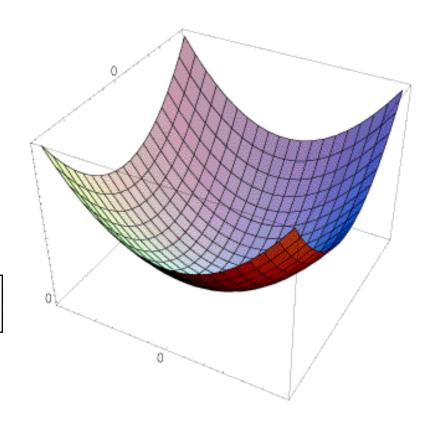
Idea: if $f(\Delta x, \Delta y)$ is large for all $(\Delta x, \Delta y)$, the patch has a corner

A quadratic function

$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M igg(rac{\Delta x}{\Delta y} igg)$$

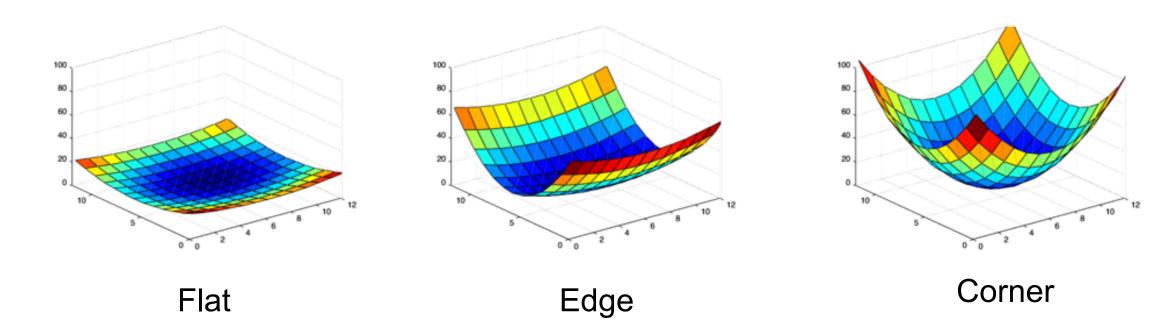
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

Gradient covariance matrix



A quadratic function

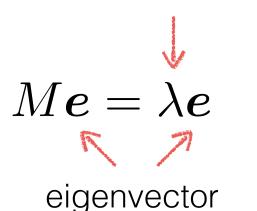
$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M igg(rac{\Delta x}{\Delta y} igg)$$



Idea: if $f(\Delta x, \Delta y)$ is large for all $(\Delta x, \Delta y)$, the patch has a corner

Compute the eigenvalues and eigenvectors of M

eigenvalue



Eigenvalues: find the roots of $\det(M-\lambda I)=0$

Eigenvectors: for each eigenvalue, solve $(M-\lambda I)oldsymbol{e}=0$

Real symmetric matrices

- All eigenvalues of a real symmetric matrix are real
- Eigenvectors corresponding to distinct eigenvalues are orthogonal

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

Since M is symmetric, we have

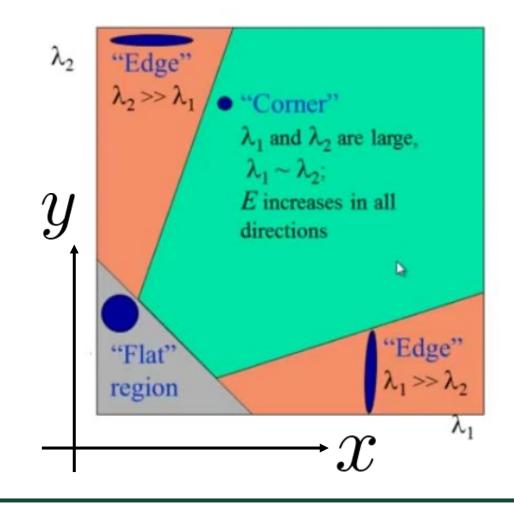
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Interpreting Eigenvalues

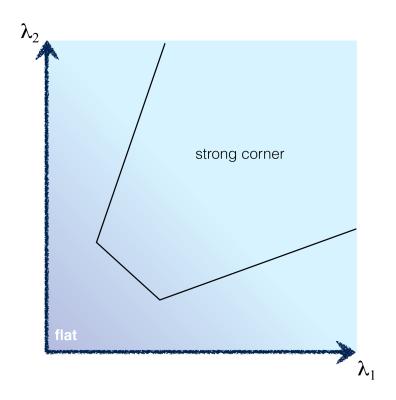
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

$$f(\Delta x, \Delta y) pprox (\Delta x \quad \Delta y) M igg(rac{\Delta x}{\Delta y} igg)$$

 λ_1 X direction gradient λ_2 Y direction gradient



Define a score to detect corners



Option 1 Kanade & Tomasi (1994)

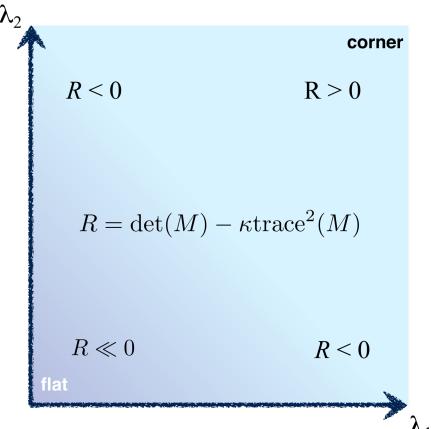
$$R = \min(\lambda_1, \lambda_2)$$

Option 2 Harris & Stephens (1988)

$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

Can compute this more efficiently...

Define a score to detect corners



$$R = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2$$

$$\det M = \lambda_1 \lambda_2$$

$$\operatorname{trace} M = \lambda_1 + \lambda_2$$

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$$

$$trace\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d$$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R \qquad \frac{\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A}) \det(\mathbf{B})}{\operatorname{tr}(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}) = \operatorname{tr}(\mathbf{A}\mathbf{P}\mathbf{P}^{-1}) = \operatorname{tr}(\mathbf{A})}$$

1. Compute x and y derivatives of image

$$I_x = G_{\sigma}^x * I$$
 $I_v = G_{\sigma}^y * I$ Sobel filter

2. Compute products of derivatives at each pixel

$$I_{x^2} = I_x \cdot I_x$$
 $I_{y^2} = I_y \cdot I_y$ $I_{xy} = I_x \cdot I_y$

3. Compute the sums of products of derivatives at each pixel

Gaussian filter

$$S_{x^2} = G_{\sigma'} * I_{x^2}$$
 $S_{y^2} = G_{\sigma'} * I_{y^2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

3. Determine the matrix at every pixel

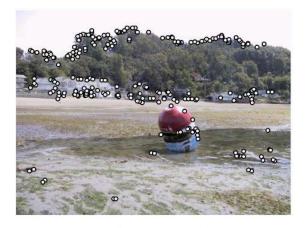
$$M(x,y) = \begin{bmatrix} S_{x^2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y^2}(x,y) \end{bmatrix}$$

4. Compute the response of the detector at each pixel

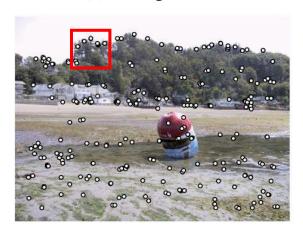
$$R = \det M - k (\operatorname{trace} M)^2$$

5. Threshold on R and perform non-maximum suppression

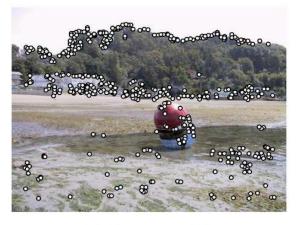
Non-Maximum Suppression (NMS)



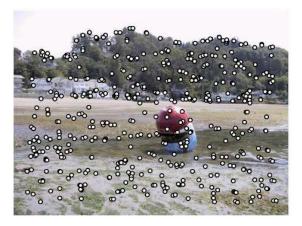
(a) Strongest 250



(c) ANMS 250, r = 24



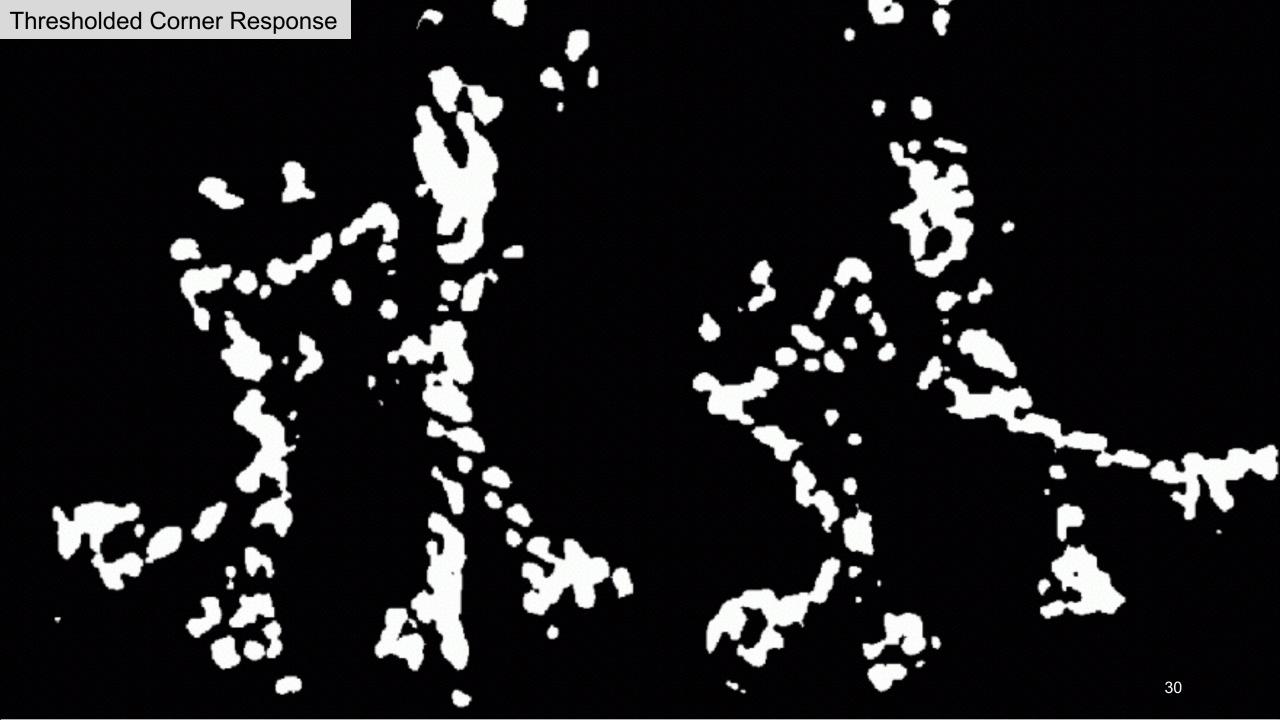
(b) Strongest 500



(d) ANMS 500, r = 16

adaptive non-maximal suppression Suppression radius r

Two paired images



Further Reading

Section 3.2, 7.1, Computer Vision, Richard Szeliski

A COMBINED CORNER AND EDGE DETECTOR. Chris Harris & Mike Stephens. http://www.bmva.org/bmvc/1988/avc-88-023.pdf